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Abstract

In this paper, a feedback active noise control (FANC) system using a model-free (MF) controller based on simultaneous

perturbation stochastic approximation (SPSA) algorithm is considered. The structure of the FANC system is first

described, and the SPSA algorithm is briefly reviewed. Subsequently, the SPSA-based MF control algorithm employed in

the FANC system is derived. Computer simulations are carried out to suggest that the SPSA-based MF control algorithm

is effective for ANC system and much more efficient than the finite-difference stochastic approximation (FDSA)

algorithm. The controller based on the SPSA-based MF control algorithm is implemented on the Texas Instruments digital

signal processor (DSP) TMS320VC33. Experimental results show that the proposed scheme is able to significantly reduce

periodic disturbances without the need to model the secondary path. At the same time, the simulations and the

experimental verification tests also show that the convergence rate of the SPSA-based MF control algorithm is acceptable,

and the SPSA-based MF control algorithm has better tracking ability under variable secondary path. This observation

implies that the SPSA-based MF controller eliminates the need of modeling of the secondary path for the FANC system.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Active noise control (ANC) has been the topic of much research interest in recent years [1]. Some of the
research results are now finding practical applications. Typical examples are adaptive vibration damping of
airplane fin structures [2], active isolation devices for ambulance transports [3], active noise control systems for
air handing ducts [4], active vibration reduction for rotating rolls [5], engine sound control in leisure boats [6]
and so on. Nowadays, it is possible for ANC to choose from a wide range of controllers to reject unwanted
disturbances in a duct. The most common form of adaptive algorithm/architecture combination is a
transversal finite impulse response (FIR) filter using the filtered-X least mean square (FXLMS) algorithm [7],
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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which has been widely used in a variety of practical applications over the past decades. This controller became
popular due to the ease of implementation and the high level of attenuation achievable [8,9]. But, in this
control method, estimation of the secondary path is crucial to the stability of the system to generate accurate
anti-noise [9].

However, characteristics of the secondary path usually vary with respect to temperature or other
environments, that is, the secondary path is time variant. Therefore, it is difficult to estimate the exact
characteristics of the secondary path accurately. To solve this problem, a model-free (MF) control
scheme based on the simultaneous perturbation stochastic approximation (SPSA) algorithm is presented
here [10]. This approach is based on the output error of the system to tune the controller coefficients
without the need to model the secondary path [11]. This approach will be discussed in detail in
this paper.

Meanwhile, in some applications, the reference signal is not easily available or may be expensive to
measure. In these cases, feedback control should be a feasible approach [12]. Since the approach does
not need measurement of the reference signal, it has been of interest for developing applicable
feedback algorithms [13]. At the same time, it should be noted that feedback control is based on linear
error-prediction techniques and requires periodic characteristics in the signal from the noise source [12].
Therefore, in this paper, we will only discuss the active noise control for periodic disturbances. Periodic
disturbances can be widely found in rotating or reciprocating machines (such as electrical motor, pump,
compressor, engine, fan, propeller, etc.) [14]. So it is very important to cancel periodic disturbances in these
types of applications.

The rest of this paper is organized as follows. Section 2 shows the structure of the feedback ANC (FANC)
system, and Section 3 reviews briefly the SPSA algorithm and presents the SPSA-based MF control algorithm
employed in the FANC system. The simulation results using the proposed algorithm in canceling periodic
disturbances are shown in Section 4. This is followed by the experimental testing of the ANC system based on
the SPSA-based MF control algorithm in Section 5. Finally, the comparison between the SPSA-based MF
control algorithm and the on-line secondary path estimation algorithm and further works are discussed in
Section 6, and conclusions are given in Section 7.
2. The FANC system

A FANC system [7] in a duct is shown in Fig. 1, where only an error microphone is used to pick up the
output error signal. The error signal e(t) is processed by the ANC system to generate the control signal u(t).
This control signal is used to drive the canceling loudspeaker to attenuate the primary acoustic noise in the
duct. Fig. 2 shows the block diagram of the FANC system using the SPSA-based MF control algorithm.
The primary path P(Z) is from the noise source to the error microphone, and the secondary path S(Z) is from
the canceling loudspeaker to the error microphone, Z is the Z-transformation operator, x(t) is the noise input
signal, d(t) is the primary disturbance signal. The SPSA-based MF controller is used to generate an control
signal u(t), the frequencies o1,y,on present in disturbance d(t) can be estimated by frequency estimation
algorithm such as fast Fourier transformation (FFT) frequency estimation and are used as the input signal of
the controller, the error signal e(t) is used to adjust the controller parameters. Note that this algorithm does
not use the reference signal and the estimator of the secondary path.
noise

canceling loudspeaker
e(t)

u(t)

ANC

error
microphone

Fig. 1. Feedback ANC system in a duct.
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Fig. 2. Block diagram of FANC system using the SPSA-based MF controller.
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3. Control algorithm

3.1. SPSA algorithm

It is known that if the secondary path of the ANC system is completely unknown, it is impossible to use
usual gradient descent method (e.g., FXLMS, back-propagation neural network, etc.) as a learning rule to
update the controller coefficients [4,7]. In this case, an estimator of the gradient of the error function is needed.
The standard finite-difference stochastic approximation (FDSA) which was proposed by Kiefer and
Wolfowitz is a well-known gradient approximation approach that relies on measurements of the objective
function, not on measurements of the gradient of the objective function. However, this learning rule has a
disadvantage in that it is not efficient, because the method requires 2p objective function measurements, where
p is the number of parameters being optimized [11]. Thus, if the dimension of the parameters is large, we
cannot expect viability of the learning rule in the sense of the operating speed. In order to overcome this
problem, the SPSA algorithm was introduced by Spall [11]. An important feature of the SPSA is its highly
efficient gradient approximation that requires only two objective function measurements regardless of the
number of optimization parameters. The gradient approximation is generated by simultaneous perturbation
(SP) relative to the current estimate of the parameter. Note the comparison of two function measurements
versus the 2p measurements required in the standard FDSA approach. Therefore, the SP gradient
approximation is much more efficient than the standard FDSA in terms of the amount of data required.
Furthermore, it has been proven that under reasonably general conditions, SPSA and FDSA achieve the same
level of statistical accuracy for a given number of iterations even though SPSA uses p times fewer function
evaluations than FDSA [15]. Based on these results, the SPSA algorithm has recently been applied to many
optimization problems, where it is difficult or impossible to directly obtain a gradient of the objective function
with respect to the parameters being optimized.

The SPSA algorithm [15] can be described as follows. Consider the problem of finding a root y* of the
gradient equation

gðyÞ �
qLðyÞ
qy
¼ 0, (1)

where y is some p-dimensional vector of adjustable parameters, L(y) the objective function and g(y) the
gradient of the objective function L(y). It is assumed that only measurements of L(y) are available and that no
direct measurements of g(y) are available.

SPSA has a standard iterative equation of

ŷkþ1 ¼ ŷk � akĝkðŷkÞ, (2)
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where ŷk denotes the estimate for y at the kth iteration, ĝkðŷkÞ represents the SP approximation to the
unknown gradient g(y) at the kth iteration, and ak represents a scalar gain coefficient.

We have available noisy measurements of L(d). In particular, at design levels ŷk � ckDk, let

y
ðþÞ

k ¼ Lðŷk þ ckDkÞ þ �
ðþÞ

k ,

y
ð�Þ

k ¼ Lðŷk � ckDkÞ þ �
ð�Þ

k , (3)

where ek
(+) and ek

(�) represent measurement noise terms [11]. The basic SP form for the estimate of g(d) at the
kth iteration is given by

ĝkðŷkÞ ¼
y
ðþÞ

k � y
ð�Þ

k

2ckDk

, (4)

where ck is a positive scalar and represents a magnitude of the perturbation; Dk ¼ fDk1;Dk2; . . . ;Dkpg is a
p-dimensional random perturbation vector (typically generated by Monte Carlo), where each of the
p component of Dk are mutual independently generated from a zero-mean probability distribution satisfying
certain conditions [11]. Note that in Eq. (4), all p components of ĝkðŷkÞare updated simultaneously by the
perturbation vector. So this algorithm is called SPSA. The optimal distribution for the components of the SP
vector is found to be a symmetric Bernoulli 71 distribution with a probability of 1

2
for each 71 outcome [16].

Taking an expectation of the quantity described in Eq. (4), from the conditions of the SP vector [17], we
have

EðĝkðŷkÞÞ �
qLðŷkÞ

qŷk

. (5)

This equation approximates EðĝkðŷkÞÞ to the derivative of the objective function qLðq̂kÞ=qq̂k in the sense of the
expected value. Therefore, this algorithm is a type of a stochastic gradient method [10,17].

3.2. SPSA-based MF control algorithm for ANC

In this section, we apply the SPSA algorithm to the ANC system. First of all, let us consider the FANC
system shown in Figs. 1 and 2. The disturbance signal d(t) is assumed to be

dðtÞ ¼ d1 sinðo1tþ f1Þ þ d2 sinðo2tþ f2Þ þ � � � þ dn sinðontþ fnÞ

¼ dc
1 cosðo1tÞ þ ds

1 sinðo1tÞ þ dc
2 cosðo2tÞ þ ds

2 sinðo2tÞ þ � � � þ dc
n cosðontÞ þ ds

n sinðontÞ, (6)

where d1, d2,y, dn and f1, f2,y,fn represent the amplitude and the initial phase of each frequency
component of the disturbance, respectively, and are parameterized as the amplitude parameters dc

1; d
c
2; . . . ; d

c
n

and ds
1; d

s
2; . . . ; d

s
n; o1;o2; . . . ;on are the frequencies of the disturbance, which can be estimated by using an

FFT or the frequency selective filter (FSF), or by using a phase-locked loop before the controller is
implemented. The details of frequency estimation are reported in Refs. [18,19], and are not considered in this
paper. Therefore, in the following analysis, it is assumed that the frequencies o1,y,on are known.

Thus, the control signal u(t) can be expressed as

uðtÞ ¼ f ðsin o1t; sin o2t; . . . ; sin ont; cos o1t; cos o2t; . . . ; cos ont;wÞ. (7)

The vector w includes the parameters of the controller to be estimated and can be expressed as

w ¼ ½w1;w2; . . . ;wm�T (8)

where the superscript m denotes the number of parameters to be estimated, the superscript T is transpose of a
vector.

The aim of the following analysis, based upon the preceding framework, is to apply the SPSA algorithm to
the ANC system.

Step (1): Define the error function

Note that in ANC system, each sampling error signal does not contain enough information as an evaluation
function to be optimized. That is, the expectation of the error signal has to be used as the evaluation function.
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For practicality, the sum of the error signal for a certain interval is used to approximate the expectation of the
error signal. Thus, the error function is defined by

JðuðtÞÞ ¼
1

2

Xl

t¼1

e2ðtÞ ¼
1

2

Xl

t¼1

½yðtÞ þ dðtÞ þ �ðtÞ�2, (9)

where t is the sampling number in a block interval, l is total sampling number of one block interval and e(t)
represent measurement noise term.

Step (2): Generation of SP vector

The Dk is generated as independent Bernoulli random variables with outcomes of 71 and it is expressed as

Dk ¼ ðD1
k; . . . ;D

m
k Þ

T. (10)

Step (3): Error function evaluations

Obtain two measurements of the error function J(d) based on the SP: J(u(w�ckDk)) and J(u(w+ckDk)) with
the Dk from step (2).

Step (4): Gradient approximation

Generate the SP approximation Dw(t) to the unknown gradient qJðuðwÞÞ=qw by

DwðtÞ ¼
Jðuðwþ ckDkÞÞ � Jðuðw� ckDkÞÞ

2ckDk

. (11)

Step (5): Update the parameter vector w

wðtþ 1Þ ¼ wðtÞ � akDwðtÞ. (12)

From Eqs. (11) and (12), it can be seen that the parameters of the ANC system are updated without the need
to model the secondary path. So this algorithm is called MF control algorithm.
4. Simulation examples

In this section, some simulations are presented to illustrate the properties of the SPSA-based MF
control algorithm, and at the same time, a comparison between the SPSA-based MF control algorithm
and the FDSA-based MF control algorithm and the feedback FXLMS (FBFXLMS) algorithm is made.
The sampling frequency used is 3 kHz, and the total sampling number of one block interval is 30. For
simplicity, constant gains are used here, ck and ak are set as 0.001 and 0.0001, respectively. The number of
iterations is 30,000.
4.1. The secondary path is linear

Case 1: First, we examine a simple problem, whereby a single major frequency on ¼ 300Hz sinusoidal
signal is used as the noise input signal. Then the control signal u(t) can be expressed as

uðtÞ ¼ f ðsin ont; cos ont;wÞ ¼ cn sinðo0ntþ f0nÞ ¼ cc
n cosðo0ntÞ þ cs

n sinðo0ntÞ, (13)

where o0n ¼ on þ d, d is the offset between the frequency of the control signal u(t) and the major frequency of
the disturbances signal d(t).

The vector w can be expressed as

w ¼ ½cc
n cs

n�
T: (14)

The secondary path is assumed to be time invariant, and the frequency of the control signal u(t) is exactly
equal to the major frequency of the disturbances d(t), i.e. o0n ¼ on. The acoustic paths are chosen as follows:

The primary acoustic path from noise source to error microphone is [9]

PðZÞ ¼ 0:8Z�9 þ 0:6Z�10 � 0:2Z�11 � 0:5Z�12 � 0:1Z�13 þ 0:4Z�14 � 0:05Z�15. (15)
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The secondary acoustic path from secondary source to error microphone is [9]

SðZÞ ¼ Z�5 þ 2:5Z�6 þ 1:76Z�7 þ 0:15Z�8 � 0:4825Z�9 � 0:18625Z�10 � 0:005Z�11 � 0:001875Z�12, (16)

where Z�1 denotes unit delay and it has the effect of delaying the sampled signal by one sampling period.
Fig. 3 presents the simulation result of the canceling errors in the frequency domain. The thin solid line

shows the power spectrum of active noise canceling error when the FANC system is turned off, and the thick
solid line shows the power spectrum of active noise canceling error when the SPSA-based MF control
algorithm is used to adapt the coefficients of the controller. From the results shown in Fig. 3, it can be clearly
seen that the major disturbance frequency are attenuated greatly. The overall attenuation is prevented from
going higher because only the major frequency (at o ¼ 300Hz) is controlled.

Case 2: Next, we deal with a tracking problem and compare the SPSA and FBFXLMS algorithms for the
case where the secondary path is time variant. Using the same settings as in case 1, after the system has entered
into steady-state phase, the secondary path is altered by letting S(z) ¼ �S(z). Fig. 4 shows the error signal in
error microphone versus the number of iterations. When the number of iteration reaches 15,000, the secondary
Fig. 3. Power spectrum of active noise canceling errors for case 1.

Fig. 4. Error signal versus number of iterations when the secondary path is changed.
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path is changed. From the results shown in Fig. 4, it can be seen that both the SPSA-based MF control
algorithm and the FBFXLMS algorithm can attenuate noise effectively. But only the SPSA-based MF control
algorithm can be adapted to the change of the secondary path. This simulation shows that the SPSA-based
MF controller can eliminate the need of the modeling of the secondary path for the FANC system.

Case 3: Again, using the same settings as case 1, it is assumed that there exists an offset between the
frequency of the control signal and the major frequency of the disturbances. The major frequency of the
disturbances on ¼ 300Hz, and the frequency of the control signal o0n ¼ 300.05Hz. Fig. 5 shows the resultant
error signal spectrum. In another frequency offset setting, o0n ¼ 300.9Hz, and the resultant error signal
spectrum is shown in Fig. 6. From the results shown in Figs. 5 and 6, it can be seen that the SPSA-based
MF feedback control algorithm allows less than 1Hz offset between the frequency of the control signal
and the major frequency of the disturbances. Of course, the greater the offset, the lower the cancellation
noise ability.

Case 4: Finally, it is assumed that there are two major frequencies in the noise spectrum (o1 ¼ 200Hz,
o2 ¼ 300Hz), and the frequency of the control signal u(t) is exactly equal to the major frequency of the
Fig. 5. Power spectrum of active noise canceling errors for offset ¼ 0.05.

Fig. 6. Power spectrum of active noise canceling errors for offset ¼ 0.9.
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Fig. 7. Power spectrum of active noise canceling errors for case 4.

Fig. 8. Error signal versus number of iterations when the secondary path is changed.
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disturbances d(t). Then the control signal u(t) can be expressed as

uðtÞ ¼ f ðsin o1t; sin o2t; cos o1t; cos o2t;wÞ ¼ c1 sinðo1tþ f01Þ þ c2 sinðo2tþ f02Þ

¼ cc
1 cosðo1tÞ þ cs

1 sinðo1tÞ þ cc
2 cosðo2tÞ þ cs

2 sinðo2tÞ. (17)

The vector w can be expressed as

w ¼ ½cc
1; c

s
1; c

s
2; c

s
2�
T: (18)

Other settings are the same as in case 1. Fig. 7 shows the resultant error signal spectrum, Fig. 8 shows the
error signal in error microphone versus the number of iterations, when the number of iteration reaches 15,000,
the secondary path is altered by letting S(z) ¼ �S(z). From the results shown in Figs. 7 and 8, it can be seen
that the SPSA-based MF feedback control algorithm has good cancellation noise ability and tracking ability
of the secondary path when there are two major frequencies in the noise spectrum.
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4.2. The secondary path is nonlinear

When the secondary path is nonlinear, a N2,6,1 feedforward neural network (NN) is used for the controller,
which has 18+7 weights (including thresholds) to be estimated. The inputs to the controller are sinont and
cosont, the hidden layer nodes are sigmoid functions f(net) ¼ (1�e�net)/(1+e�net), and net is the weighted
sum of input signals in the input layer. The output layer node is the linear function [20,21].

The model used in this simulation has the following expressions with nonlinear terms:
The primary disturbance d(t) is expressed as [22]

dtþ1 ¼ 0:8xt þ 0:6xt�1 � 0:2xt�2 � 0:5xt�3 � 0:1xt�4 þ 0:4xt�5 � 0:05t�6. (19)

The anti-noise signal y(t) is expressed as [22]

ytþ1 ¼ 0:9ut þ 0:6u3
t�1 þ 0:1u3

t�2 � 0:4u3
t�3 � 0:1u3

t�4 þ 0:2u3
t�5 þ 0:1u2

t�6 þ 0:01u2
t�7 þ 0:001u2

t�8. (20)

Case 1: A simple static ANC example is first considered to illustrate the SPSA-based MFNN algorithm
effectiveness, the secondary path is assumed to be time invariant. Fig. 9 presents the simulation result of the
canceling errors in the frequency domain. The thin solid line shows the power spectrum of active noise
Fig. 9. Power spectrum of active noise canceling errors for case 1.

Fig. 10. Error signal versus number of iterations when the secondary path is changed.
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canceling error when the ANC system is turned off, and the thick solid line shows the power spectrum of
active noise canceling error when the SPSA-based MFNN algorithm is used to adapt the coefficients of the
controller. From the results shown in Fig. 9, it can be clearly seen that the SPSA-based MFNN algorithm is
effective for a nonlinear problem and the major disturbance frequency is attenuated approximately by 40 dB.

Case 2: Next, we deal with a tracking problem. Using the same settings as in case 1, after the system has
entered into steady-state phase, the secondary path is altered by letting S(z) ¼ �S(z). Fig. 10 shows the error
signal in error microphone versus the number of iterations. When the number of iteration reaches 15,000, the
secondary path is changed. From the result shown in Fig. 10, it can be seen that the system has a good tracking
ability of the secondary path. This simulation shows that the SPSA-based NN controller can eliminate the
need of the secondary path for the FANC system.
4.3. Comparison of the SPSA and FDSA algorithms

This section compares the SPSA and FDSA algorithms for the case where the secondary path is linear.
Fig. 11 shows the error signal in error microphone versus the number of iterations. Fig. 12 shows the error
signal in error microphone versus the number of iterations when the number of iterations is between 9900 and
10,000. From the results shown in Figs. 11 and 12, it can be seen that the SPSA algorithm has slightly better
overall performance than the FDSA algorithm, Fig. 12 illustrates that the SPSA algorithm yields a lower level
of steady-state error than the standard FDSA algorithm. The critical observation to be made here is that the
SPSA algorithm achieves it in performance with savings in data: each iteration of the SPSA algorithm requires
only two measurements, while each iteration of the FDSA algorithm needs four measurements. Furthermore,
when the neural network is used for the case where the secondary path is nonlinear, each iteration of the
FDSA algorithm will need 50 measurements while each iteration of the SPSA algorithm still requires only two
measurements. In consideration of the complexity of the FDSA algorithm, the comparison between SPSA and
FDSA algorithms for the case where the neural network is used will not be considered here. The details about
combination NN with SPSA can be found in Ref. [23]. So both theoretical and empirical evidences indicate
that the SPSA algorithm is much more efficient than the standard FDSA algorithm in terms of the amount of
data required. Based on the simulation results, it can be seen that the SPSA-based MF control algorithm is
Fig. 11. Error signal versus number of iterations for the SPSA and FDSA algorithms.
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Fig. 12. Error signal versus number of iterations for the SPSA and FDSA algorithms.
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effective for ANC system. Therefore, the SPSA algorithm is employed to reduce disturbances in the following
experimental implementation.
5. Experimental verification

5.1. Experimental setup [9]

Now that the SPSA-based MF control algorithm used in FANC system has been derived and verified by
simulations, the next step is to verify the performance in an experimental setup. The test-bed chosen for this
was a simple one-dimensional duct made of wood (with two loudspeakers whose resistance is 8O and diameter
is 16 cm) and two PZM86 microphones. The primary loudspeaker was used to generate the primary
disturbance signal, and the canceling loudspeaker was used to generate the anti-noise signal. The error
microphone (]1) was used to measure the residual error signal, and fed to DSP to adjust the controller
parameters. The record microphone (]2) was used to record the error signal and fed to the BK 3560 analyzer,
which was used to analyze the error spectra. Fig. 13 shows the photo of the experimental setup, where Fig. 13a
shows the duct used, and Fig. 13b is the DSP platform in which the A/D converter AD7865 and the D/A
converter AD7840 are included, and Fig. 13c is the signal processing board in which the filter MAX296, the
amplifier MAX422 and the switched-mode power supply HAD2.5-5-N are included. Fig. 14 shows the overall
block diagram of the ANC system. The noise propagated down the duct and combined with the anti-noise
signal to minimize the acoustic energy at the downstream error microphone. The length of the duct is 210 cm,
and the cross section is 20 cm� 18 cm. The cutoff frequency of the duct for (1,0) mode is about 858Hz [24]. In
order to ensure that the acoustic wave propagates in the duct in the form of the plane wave, the control
bandwidth was limited to 800Hz. The controller was implemented on a TI floating-point DSP TMS320VC33
and the TI C-language was used to implement the algorithm. The error signal measured by the corresponding
microphone (]1) was first amplified by a amplifier MAX422, then filtered by a eighth-order Bessel low-pass
filters MAX296 with cutoff frequency of 800Hz and then converted from analog to digital by a AD7865, and
finally processed by the DSP. The primary disturbance signal and the anti-noise signal output from DSP were
first converted from digital to analog signal by AD7840, then smoothed by an eighth-order Bessel low-pass
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Fig. 13. The experimental duct system of active noise attenuation. (a) The duct, (b) the DSP platform, and (c) signal processing board.
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Fig. 14. The schematic diagram of active noise control system.
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filters MAX296 with a cutoff frequency of 800Hz, then amplified by the HY5885B power amplifier, which was
used to drive the corresponding loudspeakers. The gain level of the preamplifier could be fine-tuned to
improve its performance.

This experimental setup was selected both for convenience and simplicity. The aim of the experiments was
purely to verify that the SPSA-based MF feedback control algorithm was capable of minimizing periodic
disturbances.

The frequency response characteristics of the duct are shown in Figs. 15 and 16, where Fig. 15 gives the
frequency response of the primary path, and Fig. 16 gives the frequency response of the secondary path.
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Fig. 15. Frequency response of primary path P(Z).

Fig. 16. Frequency response of secondary path S(Z).
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5.2. Active noise cancellation

The SPSA-based MF control algorithm was used to attenuate the primary noise. A 200Hz sinusoidal signal
superimposed on white noise was used as the noise input signal, the total sampling number of one block
interval was 150, ck ¼ 0.01, ak ¼ 0.0007, and the sampling frequency was 10 kHz.

Case 1: The first case to consider is similar to Case 1 in Section 4.1. The secondary path is assumed to be
linear and time invariant, and the frequency of the control signal u(t) is exactly equal to the major frequency
of the disturbances d(t). The error signal spectrum during primary excitation and under control is shown in
Fig. 17. From the results shown in Fig. 17, it can be seen that the major disturbance frequency 200Hz
is attenuated greatly. An output error attenuation of approximately 30 dB is achieved.

Case 2: The second case investigates the tracking ability of SPSA-based MF feedback controller. Fig. 18
shows the error signal in error microphone versus the number of iterations. From the result shown in Fig. 18,
it can be seen that the convergence rate of this algorithm is acceptable. Next, similar to Case 2 in Section 4.1,
after the system has entered into steady-state phase, the secondary path was changed by covering the exit of
the channel with a board. Fig. 19 shows the error signal in error microphone versus the number of iterations.
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Fig. 17. Power spectrum of active noise canceling errors for case 1.

Fig. 18. Error signal versus number of iterations.
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When the number of iterations is equal to about 65,000, the secondary path was changed. From the results
shown in Fig. 19, it can be seen that the system has good robust performance during variation of the
secondary path.

Case 3: The third case investigates the robust performance of the SPSA-based MF feedback controller when
there exists an offset between the frequency of the control signal and the major frequency of the disturbances.
The major frequency of the disturbances on ¼ 300Hz, and the frequency of the control signal
o0n ¼ 300.05Hz, Fig. 20 shows the resultant error signal spectrum. It can be seen that an output error
attenuation of nearly 20 dB is achieved. But if the offset is larger than 0.05, it is difficult to achieve a
satisfactory result. Usually, the ANC system will oscillate and go unstable, which will be discussed in the
following section.
6. Discussion

The experimental results presented in the previous section clearly demonstrated the ability of the MF
controller based on the SPSA algorithm to provide significant levels of noise attenuation in a feedback active
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Fig. 19. Error signal versus number of iterations when the secondary path was changed.

Fig. 20. Power spectrum of active noise canceling errors for offset ¼ 0.05.
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control system. From the experimental results shown in Figs. 17 and 19, it can be seen that the SPSA-based
MF feedback controller can reduce periodic disturbances greatly, and eliminate the need of the modeling of
the secondary path for the FANC system. Of course, the on-line secondary path modeling technique can be
used when the secondary path is time variant [9,25], but one drawback to this method is that it has relatively
complex structure and is computationally expensive. Furthermore, if additive random noise is introduced into
the system in order to estimate the secondary path, it will affect convergence of the system and degrade the
performance of the system [25]. In contrast, the MF controller based on the SPSA algorithm has a simple
structure and is implementation efficient [15]. For these reasons, the SPSA-based MF control algorithm is the
preferred algorithm.

The problem remaining to be solved is how to improve the offset tolerance between the frequency of the
control signal and the frequency of the disturbance. A realizable suggestion is to make the frequency of the
control signal self-adaptive, and also be updated by the SPSA algorithm.
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7. Conclusions

This paper has presented an FANC system, for which the SPSA-based MF controller is designed. This
approach optimizes error function without using derivative of the function. Therefore, the presented ANC
algorithm does not require any estimation of the secondary path transfer function. Some simulations were
presented to suggest that this algorithm is effective for ANC system and much more efficient than the FDSA
algorithm. Following this, the MF controller based on the SPSA algorithm was implemented on a Texas
Instruments DSP TMS320VC33, and was verified experimentally with a model of a duct system. The
simulations and the experimental verification tests indicated that the SPSA-based MF controller was able to
significantly reduce periodic disturbances without the need to model the secondary path.
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